设为首页
加入收藏
帮助中心
首页 | 红盾通告 | 信息中心 | ASP技术 | 数据库 | 网页设计 | 网管专栏 | OICQ攻略 | 墨客频道 | 网站运营 |
当前位置:首页 >> 网站运营 >> GOOGLE排名 >> 正文
最新信息
·那些藏在《google网站质量…
·Google毁了Web?
·如何抢占人家的“首要意念…
·关键词的运用技巧
·搜索引擎常识
·搜索引擎的正确使用方法
·搜索引擎从入门到精通
·Google中文搜索使用说明
·全面了解Google 网页目录
·快速学会搜索方法
资料搜索
热点信息
·AdSense for Search 如何计…
·Google的支票托收是什么?
·动态建站系统Joomla生成的…
·工行美元支票托收经历
·什么是扩展文字广告?
·全面了解Google 网页目录
·如何抢占人家的“首要意念…
·快速学会搜索方法
·我的帐户在因发生无效行为…
·新功能:在您的网页直接赢得…
推荐信息
·42个搜索引擎免费登陆入口…
·工行美元支票托收经历
·Google的支票托收是什么?
·我可以通过此计划获得多少…
·如何获得 Adsense 代码?-…
·如何注册? ---Google Ads…
·google如何实现替代广告
·Google AdSense 优化技巧
·我挑我的:Google个性化服…
·我的帐户在因发生无效行为…


Google
 
怎样求得 PageRank(2)
〖编辑:Cloudy | 浏览:人次〗

PageRank 的计算,就是求属于这个推移概率行列最大特性值的固有矢量(优固有矢量)。

这是因为,当线性变换系 t→∞ 渐近时,我们能够根据变换行列的"绝对价值最大的特性值"和"属于它的固有矢量"将其从根本上记述下来。换句话说,用推移概率行列表示的概率过程,是反复对这个行列进行乘法运算的一个过程,并且能够计算出前方状态的概率。

再者,虽然听起来很难,但是求特性值和固有矢量的值是能够严密分析的一种基础的数学手段。我们能够自由地给矢量的初始值赋值,但是因为不断地将行列相乘,得到的矢量却会集中在一些特定数值的组合中。我们把那些稳定的数值的组合称为固有矢量,把固有矢量中特征性的标量(scalar)称为特性值,把这样的计算方法总称为分解特性值,把解特性值的问题称为特性值问题

(*注) 对 N 次的正方行列 A 把满足 Ax =λx 的数 λ 称为 A 的特性值,称 x 为属于 λ 的固有矢量。如果你怎么也不能适应行列的概念的话,你也可以考虑 N×N 的二元排列就可以了。同时,也可以把矢量考虑成为长度为 N 的普通的(一元)排列就可以了。

简单的例子

让我们用简单的例子来试着逐次计算 PageRank 。首先考虑一下有像下图表示那样的链接关系的7个HTML文件。并且,这些HTML文件间的链接关系只是闭合于这1-7的文件中。也就是说,除了这些文档以外没有其他任何链接的出入。另外请注意,所有的页面都有正向和反向链接(即没有终点),这也是后面将提出的一个重要假定,在此暂且不深入探讨。

表示页面间互相链接关系的推移图

首先,把这张推移图图表构造的邻接列表表示为排列式,就有以下式子。即,根据各个链接源ID列举链接目标的ID。

链接源I D 	链接目标 ID
1		2,3 ,4,5, 7
2		1
3		1,2 
4		2,3,5
5 		1,3,4,6 
6		1,5
7		5

以这个邻接列表中所表示的链接关系的邻接行列 A 是以下这样的 7×7 的正方行列。一个仅有要素 0 和 1 位图行列(bitmap matrix)。横向查看第 i 行表示从文件 i 正向链接的文件ID。

A = [
	 0, 1, 1, 1, 1, 0, 1; 
	 1, 0, 0, 0, 0, 0, 0;
	 1, 1, 0, 0, 0, 0, 0; 
	 0, 1, 1, 0, 1, 0, 0;
	 1, 0, 1, 1, 0, 1, 0;
	 1, 0, 0, 0, 1, 0, 0; 
	 0, 0, 0, 0, 1, 0, 0; 
 ]

PageRank 式的推移概率行列 M ,是将 A 倒置后将各个数值除以各自的非零要素后得到的。即以下这个 7×7 的正方行列。横向查看第 i 行非零要素表示有指向文件 i 链接的文件ID(文件 i 的反向链接源)。请注意,各纵列的值相加的和为 1(全概率)。

M = [ 
	0, 	1,	1/2,	0,	1/4,	1/2,	0; 
	1/5,	0,	1/2,	1/3,	0,	0,	0; 
	1/5,	0,	0,	1/3,	1/4,	0,	0; 
	1/5,	0,	0,	0,	1/4,	0,	0; 
	1/5,	0,	0,	1/3,	0,	1/2,	1; 
	0,	0,	0,	0,	1/4,	0,	0;
	1/5,	0,	0,	0,	0,	0,	0;
]

表示 PageRank 的矢量 R (各个的页面的等级数的队列),存在着 R = cMR 的关系(c 为定量)。在这种情况下,R 相当于线形代数中的固有矢量,c 相当于对应特性值的倒数。为了求得 R ,只要对这个正方行列 M 作特性值分解就可以了。

在分解特性值时有相应的各种各样的数值分析法,但是本文将不在这里对各种方法详细说明,请读者自己去阅读一本恰当的教科书(在你的暑假里一定有这么一本被埋没的教科书)。在此,我们就暂且使用决 GNU Octave 这个计算程序实际计算一下特性值和固有矢量。

(*注) GNU Octave ,是支持数值计算,类似于描述性出色的 MATLAB 的编程语言。扩展后的处理语言更适合于行列演算,但基本上和C语言的语风相像,因此可读性很高。详细请参照 http://www.octave.org/。 当然,除了Octave以外 MATLAB 和 Scilab 也是非常不错的语言,但是根据 GPL, Octave 是最容易得到的。


录入时间:2007-08-24 10:06:36 [打印本页] [关闭窗口] [返回顶部]
特别声明: 本站除部分特别声明禁止转载的专稿外的其他文章可以自由转载,但请务必注明出处和原始作者。文章版权归文章原始作者所有。对于被本站转载文章的个人和网站,我们表示深深的谢意。如果本站转载的文章有版权问题请联系编辑人员,我们尽快予以更正。

Copyright © 2006-2014 0733168.Com Inc All Rights Reserved
关于我们 | 广告合作 | 联系我们 | 法律声明 | 友情链接 | 意见反馈
本站所收录信息、社区话题、及本站所做之广告均属其个人行为,与本站立场无关
湘ICP备06008436号